On the Conduciveness of Random Network Graphs for Maximal Assortative or Maximal Dissortative Matching
نویسندگان
چکیده
منابع مشابه
On the Conduciveness of Random Network Graphs for Maximal Assortative or Maximal Dissortative Matching
A maximal matching of a graph is the set of edges such that the addition of an edge to this set violates the property of matching (i.e., no two edges of the matching share a vertex). We use the notion of assortative index (ranges from -1 to 1) to evaluate the extent of similarity of the end vertices constituting the edges of a matching. A maximal matching of the edges whose assortative index is...
متن کاملMaximal Inequalities for Associated Random Variables
In a celebrated work by Shao [13] several inequalities for negatively associated random variables were proved. In this paper we obtain some maximal inequalities for associated random variables. Also we establish a maximal inequality for demimartingales which generalizes and improves the result of Christofides [4].
متن کاملLine graphs associated to the maximal graph
Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...
متن کاملSpanning Maximal Planar Subgraphs of Random Graphs
We study the threshold for the existence of a spanning maximal planar subgraph in the random graph Gn . We show that it is very near p = ~TTOWe also discuss the threshold for the existence of a spanning maximal outerplanar subgraph. This is very near
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer and Information Science
سال: 2015
ISSN: 1913-8997,1913-8989
DOI: 10.5539/cis.v9n1p21